Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: A Shortcut Guide to Machine Learning and AI in The Enterprise
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > A Shortcut Guide to Machine Learning and AI in The Enterprise
AnalyticsBig DataBusiness IntelligenceITPredictive Analytics

A Shortcut Guide to Machine Learning and AI in The Enterprise

Timo Elliott
Last updated: October 10, 2016 3:10 pm
Timo Elliott
5 Min Read
SHARE

advanced-predictive-proactive-etc-two-men-fighting
Predictive analytics / machine learning / artificial intelligence is a hot topic – what it’s about?

advanced-predictive-proactive-etc-two-men-fighting
Predictive analytics / machine learning / artificial intelligence is a hot topic – what it’s about?

Using algorithms to help make better decisions has been the “next big thing in analytics” for over 25 years. It has been used in key areas such as fraud the entire time. But it’s now become a full-throated mainstream business meme that features in every enterprise software keynote — although the industry is battling with what to call it.

More Read

using docker for data science

Top Benefits of Using Docker for Data Science

Big Data Holds the Key to Television and Online Video Production
Have Marketers Taken Big Data Too Far?
In the Digital Age, Tangible Data Still Matters?
SAS Stored Process Errors: Three Common Issues to Avoid

It appears that terms like Data Mining, Predictive Analytics, and Advanced Analytics are considered too geeky or old for industry marketers and headline writers. The term Cognitive Computing seemed to be poised to win, but IBM’s strong association with the term may have backfired — journalists and analysts want to use language that is independent of any particular company. Currently, the growing consensus seems to be to use Machine Learning when talking about the technology and Artificial Intelligence when talking about the business uses.

Whatever we call it, it’s generally proposed in two different forms: either as an extension to existing platforms for data analysis; or as new embedded functionality in diverse business applications such as sales lead scoring, marketing optimization, sorting HR resumes, or financial invoice matching.

Why is it taking off now, and what’s changing?

Artificial intelligence is now taking off because there’s a lot more data available and affordable, powerful systems to crunch through it all. It’s also much easier to get access to powerful algorithm-based software in the form of open-source products or embedded as a service in enterprise platforms.

Organizations today have also more comfortable with manipulating business data, with a new generation of business analysts aspiring to become “citizen data scientists.” Enterprises can take their traditional analytics to the next level using these new tools.

However, we’re now at the “Peak of Inflated Expectations” for these technologies according to Gartner’s Hype Cycle — we will soon see articles pushing back on the more exaggerated claims. Over the next few years, we will find out the limitations of these technologies even as they start bringing real-world benefits.

What are the longer-term implications?

First, easier-to-use predictive analytics engines are blurring the gap between “everyday analytics” and the data science team. A “factory” approach to creating, deploying, and maintaining predictive models means data scientists can have a greater impact. And sophisticated business users can now access some the power of these algorithms without having to become data scientists themselves.

Second, every business application will include some predictive functionality, automating any areas where there are “repeatable decisions.” It is hard to think of a business process that could not be improved in this way, with big implications in terms of both efficiency and white-collar employment.

Third, applications will use these algorithms on themselves to create “self-improving” platforms that get easier to use and more powerful over time (akin to how each new semi-autonomous-driving Tesla car can learn something new and pass it onto the rest of the fleet).

Fourth, over time, business processes, applications, and workflows may have to be rethought. If algorithms are available as a core part of business platforms, we can provide people with new paths through typical business questions such as “What’s happening now? What do I need to know? What do you recommend? What should I always do? What can I expect to happen? What can I avoid? What do I need to do right now?”

Fifth, implementing all the above will involve deep and worrying moral questions in terms of data privacy and allowing algorithms to make decisions that affect people and society. There will undoubtedly be many scandals and missteps before the right rules and practices are in place.

What first steps should companies be taking in this area?
As usual, the barriers to business benefit are more likely to be cultural than technical.

Above all, organizations need to make sure they have the right technical expertise to be able to navigate the confusion of new vendors offers, the right business knowledge to know where best to apply them, and the awareness that their technology choices may have unforeseen moral implications.

Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Analytics Blogger – Journalist or Personal Diary?

5 Min Read
predictive analytics
Predictive Analytics

Predictive Analytics Drives Criminal Justice Reform with Recidivism Forecasting

5 Min Read
Image
Big DataData MiningSocial Data

Big Data: The Retailer’s Tool for Keeping Consumers On-Side and Happy

5 Min Read
discover the benefits of using AI in trading
Artificial Intelligence

Algorithmic Trading Communities Show the Benefits of AI

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?