Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The Perils of Forecasting Benchmarks
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > The Perils of Forecasting Benchmarks
Best PracticesPredictive Analytics

The Perils of Forecasting Benchmarks

mvgilliland
Last updated: June 4, 2012 4:07 pm
mvgilliland
3 Min Read
SHARE

Benchmarks of forecasting performance are available from several sources, including professional organizations and journals, academic research, and private consulting/benchmarking organizations. But there are several reasons why industry forecasting benchmarks should not be used for setting your own forecasting performance objectives.

1) Can you trust the data?

Benchmarks of forecasting performance are available from several sources, including professional organizations and journals, academic research, and private consulting/benchmarking organizations. But there are several reasons why industry forecasting benchmarks should not be used for setting your own forecasting performance objectives.

More Read

PMML and Open Source Data Mining – Predictive Analytics on the go!

Adding decision management to your BPM initiative
Data Quality, Collaboration and Baseball
Here’s how decision management simplifies process management
Decision Management and some top CRM processes for a cost-constrained economy

1) Can you trust the data?

Are the numbers based on rigorous audits of company data or responses to a survey? If they are based on unaudited survey responses, do the respondents actually know the answers or are they just guessing?

2) Is measurement consistent across the respondents?

Are all organizations forecasting at the same level of granularity, such as by product, customer or region? Are they forecasting in the same time interval, such as weekly or monthly? Are they forecasting by the same lead time offset, such as three weeks or three months in advance? Are they using the same metric? It is important to note that even metrics as similar sounding as MAPE, weighted MAPE, and symmetric MAPE can deliver very different values from the same data.

3) Finally, and most important, is the comparison relevant?

Does the benchmark company have equally forecastable data?

Consider this worst-case example:

Suppose a benchmark study shows that Company X has the lowest forecast error. Consultants and academics then converge on Company X to study its forecasting process and publish reports touting Company X’s best practices. You read these reports and begin to copy Company X’s best practices at your own organization.

However, upon further review using FVA analysis, it is discovered that Company X had very easy-to-forecast demand, and it would have had even lower error if it had just used a naive forecast. In other words, Company X’s so-called best practices just made the forecast worse.

This example is not far-fetched. Organizations at the top of the benchmark lists are probably there because they have the easiest-to-forecast demand. Many organizational practices, even purported best practices, may only make the forecast worse.

Benchmarks tell you the accuracy that best-in-class companies are able to achieve. But…they do not tell you whether their forecasting environment is similar to yours or worthy of your admiration. Without that information, industry benchmarks are largely irrelevant and should not be used to evaluate your performance or set performance objectives.

 

Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

First Look – Be Informed

6 Min Read

Discussing a Proposal for a Decision Modeling Notation

4 Min Read

Dick Smith Electronics

2 Min Read

EmSense, a “neuromarketing” company founded in 2004 by seven…

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?