Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Data Mining Book Review: Decision Management Systems
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > Data Mining Book Review: Decision Management Systems
Book ReviewDecision ManagementPredictive Analytics

Data Mining Book Review: Decision Management Systems

SandroSaitta
Last updated: January 16, 2012 4:54 pm
SandroSaitta
3 Min Read
SHARE

DMSI recently read the last book from James Taylor, Decision Management Systems: A Practical Guide to Using Business Rules and Predictive Analytics. As a data miner, I was interested by the subtitle of the book.

DMSI recently read the last book from James Taylor, Decision Management Systems: A Practical Guide to Using Business Rules and Predictive Analytics. As a data miner, I was interested by the subtitle of the book. Although, the book is really well written, I’m a bit disapointed regarding the content for someone in analytics. I was expecting real methodologies and examples to move from analytics to actions in the company. How to successfully apply predictive analytics in the industry. The books only partly answer this question and gives mainly examples of business rules and how they are applied in companies.

If you come from the business side (e.g. C-level), the book may be interesting but the explanations about predictive analytics are quite light and you won’t see all benefits of these techniques in the company. I know that the main focus of the book is not about teaching analytics. It seems also not to be about filling the gap between analytics and action. I’m thus a bit confused about the real objective of the book. It is also explaining concepts at a very high level of abstraction. It is thus not directly usable in practice.

The book is divided in three parts. In the first part, James explains what are DMS and why they are useful for the company. The second part focuses on building these DMS. The third part is about the enablers (people, processes and technology), i.e. the aspects that will allow such DMS to be a successful initiative. Personally, I found the book very interesting starting from chapter 6 (Design and Implement Decision Services). The topic of fraud detection and prevention is very well studied throughout the book.

More Read

Common Misconceptions on Automating Decisions

Big Data and Your Body
KPI framework for a competitive edge
Sense and Respond and the New Way of Selling
What Motivates Analytic Professionals?

A very strange choice has been made to repeat in full text the expression Decision Management Systems hundreds of times. It thus make the reading sometimes a bit tiring. The simple use of the abbreviation DMS would have solved this issue. To conclude, I found the book interesting and well written. However, keep in mind that it is written with a very high level of abstraction. You will thus have a clear understanding of the domain, but no practical advices.

Decision Management Systems: A Practical Guide to Using Business Rules and Predictive Analytics

Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

First Look – Starview

6 Min Read

Updated List of Datasets & Video Lectures

1 Min Read

Predictive Analytics and Politics – Part 1

5 Min Read

Decision Management and Insurance – Capitalize on Intelligence to Manage Losses

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?