Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Is Machine Learning v Domain Expertise the wrong question?
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Is Machine Learning v Domain Expertise the wrong question?
AnalyticsBest PracticesCulture/Leadership

Is Machine Learning v Domain Expertise the wrong question?

JamesTaylor
Last updated: April 5, 2012 2:30 pm
JamesTaylor
3 Min Read
SHARE

KDNuggets had an interesting poll this week in which readers expressed themselves as Skeptical of Machine Learning replacing Domain Expertise. This struck me not because I disagree but because I think it is in some ways the wrong question:

KDNuggets had an interesting poll this week in which readers expressed themselves as Skeptical of Machine Learning replacing Domain Expertise. This struck me not because I disagree but because I think it is in some ways the wrong question:

  • Any given decision is made based on a combination of information, know-how and pre-cursor decisions.
  • The know-how can be based on policy, regulation, expertise, best practices or analytic insight (such as machine learning).
  • Some decisions are heavily influenced by policy and regulation (deciding if a claim is complete and valid for instance) while others are more heavily influenced by the kind of machine learning insight common in analytics (deciding if the claim is fraudulent might be largely driven by a Neural Network that determines how “normal” the claim seems to be).
  • Some decisions are driven primarily by the results of pre-cursor or dependent decisions.
  • All require access to some set of information.

To ask if one kind of know-how will replace another seems to me, then, to be the wrong question. Better to ask if the balance between manually documented know-how and machine learning will change and, if so, where and why? We could also ask if there are really any decisions where machine learning or analytics cannot help at all (probably but only because the decision-makers don’t have access to data that would help or because they are obliged to follow a precise set of regulations/policies). Or we could ask if there were any decisions that only required know-how that can be derived automatically using machine-learning (probably not, most business decisions involved some policy and regulations that are fixed even if we can replace experience with machine learning).

More Read

No single lever, by itself, will switch on the low carbon…

Five Factors to Consider for Your Big Data Initiative
Reducing the Confusion about Performance Management
Help Nonprofits and NGOs at Data Without Borders DataDives
72% of People Aren’t Familiar with Hosted VoIP

Too many analytic professionals think that only the data speaks and that business rules are, as someone once said to me, “for people too stupid to analyze their data”. Similarly too many IT professionals think that everything can be reduced to business rules or to code using explicit analysis. The reality for most decisions is somewhere in between.

Not machine learning or domain expertise but machine learning AND domain expertise. Decision Management in other words.


Copyright © 2012 http://jtonedm.com James Taylor

TAGGED:domain expertise
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Yes, you need more than just R for Big Data Analytics.

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?