Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Big Data: A Kick in the Business Intelligence Expert’s Habits
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Big Data: A Kick in the Business Intelligence Expert’s Habits
AnalyticsBusiness Intelligence

Big Data: A Kick in the Business Intelligence Expert’s Habits

Editor SDC
Last updated: April 6, 2012 10:12 am
Editor SDC
5 Min Read
SHARE

For some time the word Big Data appeared and is widely used by journalists, analysts, consultants and some software or hardware vendors interested in the world of BI. No definition has emerged and speeches about Big Data mix many things: overall volume of data to be processed, the volume of the elementary data (web log, text, sensors networks, photo, video), data types (structured, unstructured, multi-structured) and analytical ambitions (going beyond BI), etc.

For some time the word Big Data appeared and is widely used by journalists, analysts, consultants and some software or hardware vendors interested in the world of BI. No definition has emerged and speeches about Big Data mix many things: overall volume of data to be processed, the volume of the elementary data (web log, text, sensors networks, photo, video), data types (structured, unstructured, multi-structured) and analytical ambitions (going beyond BI), etc.

It is unclear whether the word Big Data is adapted and will continue, but it is certain that simultaneously demand for decision support is growing and new solutions offers appear (what about the chicken and the egg). “New” requests and “new” technology solutions push to process more data both in terms of volume and variety. Volume of data generated daily in information systems is growing exponentially and therefore volume explodes also for decision support systems. Ten years ago Teradata animated a club composed of clients who had more than a Terabyte in their decision system; today we have a club for companies which have more than one Petabyte.

More Read

4 Tips to Simplify Your Business Rules

The New York City Fire Department has partnered with IBM to…
The Growing Relationship Between Drones and Big Data
Supercharging Sales and Commerce in 2016
Enhance Your CRM Data to Sharpen Your Sales Pitch

What seems to me most important in all these new approaches is not necessarily the volume, but the desire to develop advanced analytical approaches in dealing with all kinds of raw data, which require a lot of work to draw business information. No longer you can take only some invoice lines and do some basic operations to generate a more or less aggregated data which has business value. For example you could want to identify a customer / prospect surfing the web, define if he has a positive or negative image of your brand or product, or identify networks of friends or defrauders who could create business concerns, or implement engines recommendations that are based on customers’ web browsing and profile, etc.…

 In order to have functionalities mentioned above, you have to get a set of tools that extract raw data (e.g. web logs, texts, social networks), to gain knowledge (profile, segment, affinity, churn), to predict (attrition, propensity, virality) and act (recommendations for tenders, pricing). You have to be able to mix data from a classic intelligence information system, with data extracted and structured via MapReduce (Hadoop, Aster Data) programs. Beyond data integration you have to work with data mining tools for advanced analysis, develop models and use them to enhance business processes, for example on websites, call centers, or your various channel interactions with the customer.

Teradata which has a long history in data analysis could not miss this exciting new area. As classical solutions are poorly suited for some treatments needed for these “new” data for the world of business intelligence, Teradata has acquired Aster Data at the beginning of 2011, a company which has a specialized patented solution offering SQL-MapReduce ™. With these additional means to better exploit large volumes of non-relational data, Teradata are able to offer more innovative analytical solutions to customers seeking to use their information systems to differentiate their market positioning (customer relationship analysis and networks, marketing optimization, fraud detection and prevention, etc…). What is interesting for Teradata is not particularly the growth of data, but rather the hidden value that can be found in this data by applying data science. 

To go further on Teradata Aster specialized patented solution offering SQL-MapReduce ™, you can usefully consult the following link, and discover why companies like LinkedIn, Gilt Groupe, and Barnes & Noble have tapped the data deluge for competitive advantage with a Teradata Aster solution: http://www.asterdata.com/product/index.php

TAGGED:bibig databusiness intelligence
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Julia Language
Big Data

Could the Julia Language Fill an Untapped Void for Big Data Programmers?

6 Min Read

How NASA Tackles Big Data with MySQL

7 Min Read
increasing hospital profit margins
AnalyticsExclusive

Are Advances In Analytics The Key To Increasing Hospital Profit Margins?

5 Min Read
hadoop analytics
Analytics

Hadoop to Be Pervasive By 2015

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?