Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: How to Prepare Your Business Data for Artificial Intelligence
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Artificial Intelligence > How to Prepare Your Business Data for Artificial Intelligence
Artificial IntelligenceBig DataBusiness IntelligenceExclusive

How to Prepare Your Business Data for Artificial Intelligence

Nancy Spektor
Last updated: April 4, 2018 12:27 pm
Nancy Spektor
8 Min Read
business Data and AI
Shutterstock Licensed Image - By chombosan
SHARE

Over the recent decade, only a few technologies captured our attention quite as much as artificial intelligence (AI). The interest is justified, because the technology is poised to drastically change the current business landscape.

Contents
AI Implementation Considerations1. Ensure That Your Business Data Has Labels to Help AI Make Sense of It2. All Context Must Come from You3. Assess Existing Processes4. Ensure Opportunities for Employees to Educate Themselves on AIThe Bottom Line

For example, a recent survey of Fortune 500 CEOs found that 81 percent of them believed that AI/Machine learning technology was “important” for them.

Fortune AI Business Data
Image Source: Fortune

As you can see, AI was more important for CEOs than virtual reality, remote sensors, nanotechnology, 3D printing, and advanced robotics. More and more people realize that AI is not science fiction and is already being used extensively.

Are you ready to embrace the endless possibilities provided by AI?

More Read

iot in solar power

3 Compelling Ways IoT is Changing the Solar Industry

Turn Analysis Into Action: 3 Tips
When is a zero not a zero?
What Is a Klout Score and Why it Is Important
The CODA is the outcome of the only Brown-RISD joint studio, Out…

In this article, we’re going to review what you need to consider to ensure a successful implementation and four preparatory actions that you need to implement to prepare your business data for AI.

AI Implementation Considerations

To lay out the groundwork for successful integration of AI, you need to consider the following.

  • Familiarize yourself with AI and what it can do for your business data. You as a business owner cannot afford not to understand the capabilities of AI, because you can lose a lot of great opportunities. So, to make sure you know what it can do, take an online course and get your knowledge up to date. Good options include Intro to Artificial Intelligence by Udacity and Artificial Intelligence for Business from Columbia Business School.
  • Determine the most important areas in which AI can benefit your business. Using AI without a clear action plan is not a good move because in this case, you’re basically diving into the unknown. When discussing how your business can benefit from AI, be sure to identify particular areas and prioritize some of them. Business data should certainly be there.
  • Make sure your IT infrastructure can handle the change. A business must have a solid IT infrastructure to handle AI, and many of them are lacking that. For example, a recent study by Belatrix found that 29 percent of respondents viewed “Difficulty managing and analyzing the data” as one of the top five issues with getting started with AI.

Now, let’s see what it takes to prepare your business data for AI.

1. Ensure That Your Business Data Has Labels to Help AI Make Sense of It

AI and machine learning (ML) have limited ability to analyze data without labels. Even though unsupervised learning in ML can conduct exploratory analysis on such data, it cannot produce insightful information. Therefore, it’s not recommended for businesses to make a transition to AI and ML without data that is properly labeled.

For example, let’s assume that a business has a large volume of customer support emails and tickets that are labeled according to the category of the problem (deliver issues, refund requests etc.). By developing a system that automatically labels incoming customer support chats, emails, and phone calls, the business will ensure that the insights produced by AI will be meaningful.

2. All Context Must Come from You

Do you know what information to feed AI algorithms? Indeed, this is something that should not be taken lightly, because thinking through what information to feed is not as easy as it sounds. For example, most AI and ML algorithms are proficient at determining correlations, but they don’t understand the information surrounding the data.

As the result, they cannot determine whether the information makes it relevant or irrelevant. Below is an example of how “context” could undermine the ability of AI and ML to develop good solutions:

A recommendation tool for an online store over-recommends a particular product. To discover the problem, specialists conduct an investigation and find that this product was promoted heavily six months ago, so historical data showed a large increase in sales from current customers; moreover, the promotion was based on the “discount” rather than the actual usefulness to the customer.

To avoid having similar problems, you should give AI both data and context. In this case, it will understand the facts surrounding the data and ensure that solutions it produces are relevant.

3. Assess Existing Processes

You should thoroughly evaluate all departments within your organization and all processes with each. In some cases, you may have to automate some of the tasks to ensure that your personnel focuses on tasks that deliver more value.

To determine the areas of great opportunities and eliminate time- and effort-consuming responsibilities, ask your employees the following questions:

  • What are the low-value aspects of jobs that could be removed?
  • Which repeatable tasks take a lot of time?

4. Ensure Opportunities for Employees to Educate Themselves on AI

Investing in your employees’ knowledge of AI and its impact on data is a must for all businesses. In addition to increasing the chances of successful adoption of the new technology, it’ll be a guarantee of competitive advantage in the long-term.

Many businesses are already investing in employee education and even more plan to engage within the next several years. According to “Is Your Business AI Ready” report from Genpact, 82 percent of companies plan to implement AI in the next three years and 38 percent say they currently provide their employees with reskilling opportunities.

AI won’t do everything itself. Bear in mind that it is your responsibility as an employer to encourage continuing employee education. It can be done in several ways:

  • Pay for online AI courses
  • Organize workshops in-site
  • Organize trainings

By investing in employees, you’re also increasing the readiness of your data, as they will improve their knowledge of data integration.

According to the aforementioned study by Genpact, here are the areas of employee education in which AI leaders support the change.

Genpact

One more thing: ensure that all training and learning sessions are tailored to the needs of your company. For example, consider your industry, company size, and data needs while consulting with an educational expert about choosing a course.

The Bottom Line

AI is increasingly considered the key to creating a unique competitive advantage and unlocking the value of the data accumulated by a business. While integrating AI isn’t exactly an easy thing to do, it’s also not one that any innovative organization can leave off the table for long.

Preparing data for AI is a critical component for ensuring that the accumulated data transforms into a value-added reality, but it also requires some serious preparation and monitoring. Hopefully the tips above will ensure that your preparation is flawless and creates a solid foundation for AI integration.

TAGGED:AIartificial intelligencebibusiness databusiness intelligenceintegrate AI
Share This Article
Facebook Twitter Pinterest LinkedIn
Share
By Nancy Spektor
Follow:
Nancy Spektor has sharpen her pencil at The Daily of the University of Washington. After graduation she decided to combine her business degree with her passion for written communication at www.a-writer.com. Nancy writes about marketing strategies, content management and various other topics that she finds intriguing. If she is not composing on her laptop or notebook, you probably can find her playing with her dog, Bok Choy.

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

vps and big data
Artificial IntelligenceExclusive

AI Reframes The Debate Between VPS & Shared Hosting Options

7 Min Read

Fascination with Hadoop pushes, pulls Big Data analytics into mainstream. (Part One)

6 Min Read
AI powered chatbots in healthcare
Artificial IntelligenceExclusive

Artificial Intelligence Chatbots Could Make Your Doctors Obsolete

8 Min Read
medical AI
Artificial Intelligence

Medical AI Isn’t Just Beneficial – It’s Becoming Necessary

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?