Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Comments on the Nine Laws of Data Mining
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Comments on the Nine Laws of Data Mining
Data MiningPolicy and Governance

Comments on the Nine Laws of Data Mining

SandroSaitta
Last updated: June 30, 2011 7:06 pm
SandroSaitta
3 Min Read
SHARE

lawAfter reading the article from Tom Khabaza, I want to discuss some aspects of it with you.

lawAfter reading the article from Tom Khabaza, I want to discuss some aspects of it with you. The article is in general nicely written and shows the experience of the author, however I do have comments for some of the laws.  In the first law, it is stated that that there is no data mining without business objective. While it is true most of the time, this is not always the case. In R&D, a data mining project can be started without clear business goal.

Since data mining may discover unexpected knowledge, there may be no defined objective at the beginning of the project. Later in the project, one can define the objective if specific trends has been found in the data for example. Clearly, there are two approaches for data mining in the company: top-down and bottom-up. The top-down approach is driven by business needs. The bottom-up approach is driven by the data. Both approaches can be complementary. When you are driven by the data, the business objective may come later. If you discover that there is no usable trend in the data, maybe there is no place for a project and thus no business objective. But there is still data mining.

In the second law, Khabaza states an excellent point about the importance to understand the business:

More Read

“Reality mining … is all about paying attention to patterns in life and using that information…”

Warranty Management – New rules to apply
IBM Launches New Advanced Analytics Center In New York,…
Actuate Makes Big Play with BIRT Analytics
AT&T studies user data to cope with iPhone crunch

“[…] whatever is found in the data has significance only when interpreted using business knowledge, and anything missing from the data must be provided through business knowledge.”

In the fourth law, Khabaza explains that  problem formulation and resolution are both tasks for the data miner:

“However, these views arise from the erroneous idea that, in data mining, the data miner formulates the problem and the algorithm finds the solution.  In fact, the data miner both formulates the problem and finds the solution – the algorithm is merely a tool which the data miner uses to assist with certain steps in this process”

It means that the complete knowledge discovery process can’t be automated. The data miner has to formulate the problem, solve it and interpret the results. However, parts of the data mining process can still be automated (ETL, building the model, scoring, etc.)

Read the full article from Tom Khabaza.

 

Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Consolidation in the Social Business Market Continues: Salesforce.com Acquires Radian6

4 Min Read

With physicists across the country pushing for universities to…

1 Min Read

Why Old Media Can’t Deny New Media

9 Min Read

Maximize Your Market Research Investment in a Recession

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?