Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The R-Files: Paul Teetor
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > The R-Files: Paul Teetor
Best PracticesR Programming Language

The R-Files: Paul Teetor

DavidMSmith
Last updated: October 20, 2011 11:11 am
DavidMSmith
5 Min Read
SHARE

“The R-Files” is an occasional series from Revolution Analytics, where we profile prominent members of the R Community.

R-Files 

“The R-Files” is an occasional series from Revolution Analytics, where we profile prominent members of the R Community.

More Read

big data security

The Big Data Security Transformation

4 Steps to Delete Yourself from the Internet for Data Privacy
Outsourcing, Off-shoring and Near-shoring – what works or doesn’t for BI & DWH
Six Steps to Transition to the Private Cloud
ggplot2 for Big Data

R-Files 

Paul Teetor

Name: Paul Teetor

Profession: Quantitative developer (freelance)

Nationality: American

Years Using R: 7

Known for: Author of R Cookbook (O’Reilly Media, 2011)

An active member of the R community, Paul Teetor is a quantitative developer and statistical consultant based in the Chicago area. He’s been using R for seven years, during which time his contributions to the community have been significant — particularly in the field of finance. He’s currently a freelance consultant largely focused on time series analysis. Teetor is also the author of the popular R Cookbook, which was published by O’Reilly Media this past March and offers new users over 200 “recipes” for performing more efficient data analysis with R.

He was first drawn to R for the flexibility it offered him in developing trading systems. Citing his own background in software engineering and the need to perform sophisticated statistical analysis in a programmable — and cost-effective — environment, Teetor said that R emerged as the perfect fit for him. Since then, he has performed the majority of his financial analyses in R and has also emerged as a leading evangelist for the community. He gradually collected a catalog of tricks and techniques for R, many of which were compiled into the R Cookbook. He’s been a participant at conferences such as the Joint Statistical Meetings and the R/Finance Conference where he evangelized the role of R in quantitative finance. Some of those talks and papers are available on his website.

“Prior to R, I did most of my statistical analysis in Excel — and occasionally SAS,” said Teetor. “However, performing statistical analyses for financial tables in either was extremely tedious and puts you in a specific box. R is a modern, programmable language, so I can make it do what I need it to do in a timely manner. It’s been a pleasure to be able to take what I’ve learned from R and share it with other community members – and to continue learning new tips and tricks from them as well.”

Teetor uses R for the majority of his finance work because, as he puts it, it does things other languages “simply cannot do.” He cited the example of hedge ratio calculations which benefit from the flexibility of R, a topic on which he gave a lightning talk at R/Finance this past summer. He was also quick to credit fellow R user Jeff Ryan (whom we profiled here earlier this year) as an influential member of the R community, citing his finance packages as particularly useful. “I use nearly every finance package he’s written, they’re incredibly helpful and greatly streamline the process of R-based financial analysis.”

When asked about the relationship between financial analysis and the rise of the data science movement, Teetor noted, “People in data science are experiencing what financial analysts have experienced for years: out of the box data analysis is not realistic. You need to incorporate a heavy amount of custom statistics, something that’s not easy to do with a commercial product where you can’t get to the source code. Data scientists need a way to construct custom analyses and R gives them that opportunity. Nothing else on the horizon that can compete with that, in terms of finance or the wider field of data science.”

Looking ahead, Teetor sees a bright future for the continued evolution of R. Since there is no real alternative on the market, he argues, R’s potential for future growth is nearly unlimited. He did, however, cite R’s capacity (or lack thereof) for software engineering as one possible area of improvement. “When R was originally envisioned, it wasn’t thought of as a vehicle for software engineering. Nobody expected people to keep their scripts as opposed to just throwing them away. As it’s grown though, people are building larger, more complex systems with longer lifetimes.” It’s an area that Teetor cites as one of the main struggles with R today, but also one which he cites as a great opportunity on which to innovate.

Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Simple Tools for Building a Recommendation Engine

9 Min Read

Because it’s Friday: Please don’t write like a scientist

5 Min Read
Cryptocurrency blockchain for prevention to accounting fraud
Best PracticesBlockchainBusiness IntelligenceExclusiveITRisk ManagementSecurity

Could Cryptocurrency Be the Answer to Accounting Fraud?

7 Min Read
email marketing data
Best PracticesBig DataExclusiveFeaturedMarketing

How Email Deliverability Data Can Help You Choose the Best Email Marketing Platform

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?