Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Be a Text Analytics Heretic
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Knowledge Management > Be a Text Analytics Heretic
Big DataBusiness IntelligenceKnowledge ManagementMarket ResearchSentiment AnalyticsSocial Media AnalyticsText Analytics

Be a Text Analytics Heretic

metabrown
Last updated: April 30, 2013 4:47 pm
metabrown
6 Min Read
text analytics
SHARE

text analyticsPromises, promises! Text analytics literature is full of them. Gain valuable insights! Know your customer! Harness the power of Big Data! And so on, and so on. And hey, who doesn’t want valuable insights? The problem is that knowing something about your customer isn’t the same as having the ability to turn that information into cold hard cash.

text analyticsPromises, promises! Text analytics literature is full of them. Gain valuable insights! Know your customer! Harness the power of Big Data! And so on, and so on. And hey, who doesn’t want valuable insights? The problem is that knowing something about your customer isn’t the same as having the ability to turn that information into cold hard cash.

If cold, hard cash is what you’re after, stop messing around looking for the charm and beauty in your text. Don’t look for perfection. Look for actionable information that you can use to address a specific business problem tied to a measurable revenue or cost-savings opportunity. Period.

You want to make money? Be a text analytics heretic. Follow these three principles of text analytics heresy:

More Read

Using Big Data For Non-Profit Gains: 4 Lead Generation Strategies

Using Big Data For Non-Profit Gains: 4 Lead Generation Strategies

Oracle Hyperion Products Challenged by New Generation of Expectations
The Power of Cloud-based BI and Analytics
Business Intelligence Isn’t Just About Technology [VIDEO]
How can Jarvis be helpful in the Future of Big Data Analytics?
  • Beware of insights
  • Think small
  • Don’t get sentimental

Beware of insights

The promise of “insight” is so alluring. You read those brochures, and you start thinking, “I will look deep into my data, and she will reveal her innermost secrets to me, and me alone.” Oh, the sex appeal of it.

It’s tempting to believe you can approach data without a plan and extract pearls of wisdom, but that’s unrealistic. What’s the alternative? Before beginning a text analytics project, make the effort to select and quantify a specific business issue to address, and determine what information you require to address it.

Think small

It seems that every analytics tool is a Big Data solution these days. Much criticism focuses on the limitations of products in handling truly massive datasets. That criticism may be founded, but it misses the point. The mere fact that massive quantities of data are at hand doesn’t imply that there is something to be gained from using all of it to address any particular question, let alone whether it is cost-effective to do so.

Vendors push Big Data solutions for several reasons. It’s a hot concept right now, so it’s true that many prospects are talking Big. No vendor wants to disappoint you. And no vendor wants to appear less capable than the competition. Not to mention that Big Data calls for big resources, and justifies a big pricetag.

Those who are put off by high priced tools often respond by creating or using equivalents that are lower priced or free, and feel very superior about it. You read about them and their Big Data war stories in the tech press all the time. Of course, those stories leave out some little details. Like the fact that those “low-cost” alternatives depended on the availability of a lot of highly trained volunteer (or otherwise underpaid) talent. Will those people work free for you?

Use only as much data as justified to address a particular business need. If you’re buying a Big Data solution to make a pie chart, you’re a fool, but you’re not alone. Stop being silly! You want to build a predictive model? Great. In most cases, you don’t need to inhale every single bit of your data into an analytics tool to do that. Use a sample, for heaven’s sake. If you know nothing about sampling, pick up a book, or invest in a class, and learn. You can save a fortune in resources, and get results faster, that way.

Don’t get sentimental

Everybody wants sentiment analysis. At a certain level, that’s smart. Knowing how many people are mentioning your product (or any other topic) doesn’t mean much if you don’t also know something about what they are saying.

But assessing sentiment in text is a tricky business. Humans don’t agree with one another consistently when assessing sentiment of text. In fact, even a single person asked to assess the sentiment expressed in a particular bit of text on several occasions will often give different answers. It’s hard even to make a presentation on the topic, because the audience invariably gets caught up in picking over the individual cases and debating whether the assessments are acceptable. Where’s the actionable insight in that?

Instead of sentiment categories, look for something better defined and more actionable in your data. Take the example of Paypal’s Han-Sheong Lai, who uses text analytics to identify customers with intent close their accounts. Does he look for broad categories of positive and negative sentiment? No. He looks for people saying things like, “I’m going to close my account.” You can bet that makes it a lot easier to accurately assess risk, and quantity results.

You want to be cool? Fine. Do whatever they talk about in the tech press. But if you want to make money with text analytics, be a heretic.

(image: text analytics / shutterstock)

Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Top 14 Benefits of Business Intelligence – Part II

0 Min Read

Analytics for Creating More Choices

5 Min Read
companies use data analytics to improve fairness in employee reviews
Big Data

Data-Driven Employee Reviews Are Less Biased and Unfair

9 Min Read

The N-gram and the Book “Uncharted: Big Data as a Lens on Human Culture”

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?