Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: An Introduction To Machine Learning Using Spark Language
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > An Introduction To Machine Learning Using Spark Language
ExclusiveMachine LearningNews

An Introduction To Machine Learning Using Spark Language

Nirmal Patel
Last updated: September 5, 2018 8:19 pm
Nirmal Patel
5 Min Read
machine learning with spark-language
Shutterstock Licensed Photo - By a-image
SHARE

Machine learning is an upcoming field in the world of digital science, which allows you to create algorithms to make your device learn to operate on data and also to make predictions based on collected data. Machine learning course is possible through various languages like Python, Java, C++, R, etc. Apache Spark is considered to be a convenient option as a general engine for SQL based functions, creating algorithms for Machine learning using various languages and further processing of graphs and data. Spark is also known for its integrated framework to operate both on real-time streaming and Machine learning. As such, it is a great tool for beginners to introduce themselves to Machine Learning from the basics.

One must know about the various techniques to make predictions in machine learning by Spark. Supervised learning is to direct the data towards a specific label by training a certain set of unlabelled dataset. It is used to classify data- for example spam filtering or image recognition. Unsupervised learning is used for clustering data based on certain similar features in the set of unlabelled data. This is used to predict purchase patterns of customers on sites like Amazon and also for applications on social networking sites. Semi-supervised learning uses both supervised and unsupervised techniques to perform certain predictions like voice recognitions. Another method is reinforcement technique which analyses previous datasets into maximizing a certain result. This is also called the forecasting method. As one may notice that the basic principles among all these techniques is to locate a matching set among existing data to extract future predictions.

There are certain steps involved in determining an algorithm for a dataset which can do more than just data prediction. Feature extraction is the method to filter out the data meant to be tested because the entire data is usually not required to process. This is the first step to extract input data for the algorithm which can be done manually or automatically. Manual method is time consuming so automation is preferred. Principal component analysis is used for automatic feature extraction. The next step is to split the dataset into training set or test set such that errors can be detected. Some common methods for this process are random subsampling, K-fold and leave-one-out. Training the model set is the core process for which the algorithm needs to be selected according to the task in hand. Spark has a set of algorithms in its Machine learning engine which can be used for these purposes, called the MLlib or the Machine Learning library. The algorithms include functions like classification, regression, formation of decision trees, recommendation by ALS (Alternating Least Squares), clustering and topic modelling among several others. Models are eventually evaluated to check the accuracy of the algorithms.

The best thing about Mllib is that it provides machine learning API?s in different languages like Scala, Java & Python. You can develop your machine learning application in any of these languages.

More Read

sobm for ai-driven cybersecurity

Software Bill of Materials is Crucial for AI-Driven Cybersecurity

How Data-Driven Brands Can Use PowerShell Invoke-WebRequests
IP Scores Are Crucial to the Future of Data Security in 2022
This Scary Good Marketing Data Proves That Halloween Is A Winner
How To Maintain Accurate Data Through Conversational Analysis?

The algorithms can be used individually or by grouping them to create a more accurate model. One must have an idea about the actions of these basic MLlib algorithms. Classification is a supervised technique which is used for applications like fraud detection in banks, email spam detection, etc. Regression analysis is to understand the linkages between independent and dependent variables. Decision tree learning analyses a set of data to come at a target prediction following a structure like a tree?s branches. The recommendation function uses cumulative filtering to decide user?s preferences based on their previous data. You must have come across recommendations on shopping websites, which produce lists based on your previous searches. Clustering is an unsupervised method to cluster data into similar patches. Topic modelling is also an important algorithm used to determine abstract information from a data set.

Machine learning provides a number of algorithms to work on so here you need to select the appropriate algorithm to build your application. For example, to develop a spam classifier we can use Naive Bayes or logistic regression or any other.

TAGGED:Apache Sparkmachine learning
Share This Article
Facebook Twitter Pinterest LinkedIn
Share
By Nirmal Patel
Follow:
Nirmal Patel is digital marketer & freelance enthusiast and ingenious writer & digital marketer who enjoys the challenges of creativity attention to detail at Imarticus Learning Pvt Ltd. In free time I like to write stories and Articles.

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

machine learning
Big DataData CollectionData ManagementExclusiveMachine Learning

How Low Conversion Data Seriously Hinders Machine Learning

7 Min Read
AI and machine learning misconceptions
Artificial IntelligenceExclusiveITMachine LearningNews

Busting the Myths of AI and Machine Learning

7 Min Read
big data has impacted the real estate industry
Big Data

How Big Data Has Impacted The Real Estate Industry

6 Min Read
artificial intelligence business
Artificial Intelligence

Artificial Intelligence, Business, And Our Future Job Security

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?