Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Technology and the Effective Marketer
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Technology and the Effective Marketer
AnalyticsBest PracticesBig DataBusiness IntelligenceCRMCulture/LeadershipData ManagementDecision ManagementMarket ResearchMarketingPredictive AnalyticsPrivacySocial DataSocial Media Analytics

Technology and the Effective Marketer

mfauscette
Last updated: March 31, 2013 8:04 am
mfauscette
6 Min Read
SHARE

business intelligenceIn this post, I’ll focus on customer intelligence driven marketing and the proper use of data. In the “information economy,” data is created at an unbelievable pace, but to make some reasonable business use of that data is challenging. The concept of being a data driven business isn’t new, but there are a lot of barriers that must be overcome, both technical and cultural.

business intelligenceIn this post, I’ll focus on customer intelligence driven marketing and the proper use of data. In the “information economy,” data is created at an unbelievable pace, but to make some reasonable business use of that data is challenging. The concept of being a data driven business isn’t new, but there are a lot of barriers that must be overcome, both technical and cultural. In other words businesses need to systematically move from “big data”, which is just a large pile of useless “stuff”, to “smart data”, or data in the right business context, delivered to the right person at the time of need. 

Analytics and business intelligence are evolving from the days of historical reporting to a dynamic approach to providing real time usable insights. From a system standpoint, I’ve written about this idea before, moving to systems of decision. I won’t go back through the 3 systems, transaction, decision and relationship again here, but you can refer to several other posts including this recent one on productivity.

The purpose of this series and this post is to talk about these systems of decision in the context of customer intelligence driven marketing and the data value chain. This application of data in the marketing context is a very important transition for marketing and requires a more coordinated and integrated approach both from the necessary technology and from the marketing employees themselves. Focusing on the data value chain it looks something like this:

More Read

business technology

Ways through which Technology is Making Businesses More Efficient

Teradata Podcasts on Data Mining And SNA
Integrating the Commerce Experience: Salesforce to Acquire Demandware
ROI of Social Media Mix
Government Launches Study to Explore Implications of Big Data

big data marketing

Customer Data Value Chain:

  • Collection – The collection and storage process isn’t something new really although it must involve more data sources, many of which are unstructured and will require new ways of storing and processing. Traditional data like customer information, transactions, service issues, etc. are a part of the mix of course (which presupposes that the company has a basic CRM system in place). The newer sources of data, which can come from social media monitoring tools, customer communities or even smart sensor data (think smart electrical meters for example), can prove a rich source of additional customer insights when processed and mapped with the traditional data sources.
  • Optimization – Once data is collected various types of analytic software can be used to make the data useful. The data is often integrated, processed and turned into various visualizations that could range from reports to dashboards. Optimized data is referenced to some business context that is the key to making the data into usable information.
  • Trend – Once data is processed and visualized in some way it can be used to establish historical trends that can be useful across many marketing activities. Trend data is used to refine targeting of campaigns, find cross sell opportunities, support dynamic web content, define and refine loyalty programs and a variety of other functions.
  • Predictive – Taking publically available social web data, which represents attitudes, opinions, needs, etc. of customers as well as transaction data and applying behavioral models can yield analysis that can with reasonable accuracy, predict customer and prospect behavior. There are a lot of uses of this model driven approach across marketing and sales. In the customer community context, for example, these behavioral models could be used to identify future influencers or find influencers that were starting to cool off on your brand. In sales the same techniques could predict buying signals to optimize sales efforts.
  • Decisions – The top of the chain is providing data in the correct business context and in real time to the right employee or group of employees to support effective business decisions. This move from backward facing historical data to forward facing real time decision support is the building block of the data driven enterprise. The systems of decision integrate with systems of relationship to help identify and bring together the optimized set of employees or other constituents in the business context of the issue, decision, problem, etc. to facilitate fast, efficient real time business issue resolution, strategy optimization and more accurate, iterative actions.

Just one additional thought about this data value chain, it does not and can not, in any way, risk customer / prospect privacy. This point is critical and a privacy breech is one of the fastest ways to tarnish a brand. The social data collected and analyzed must all be from public sources and any confidential customer data around transactions and other activities with the company must be protected. I hope this is just me being over careful with all the discussions and focus online over privacy, but I guess you never know.

TAGGED:crmcustomer data value chain
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

CRM Paradigm Shift

6 Min Read

Automating Manual Imports into Salesforce

3 Min Read

DMR Poll: Privacy Issues when Merging CRM and Web Customer Data

1 Min Read

Predictive Analytics World New York City Conference Announces Speaker Line-Up

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?