Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in ecommerce
    Analytics Technology Drives Conversions for Your eCommerce Site
    5 Min Read
    CRM Analytics
    CRM Analytics Helps Content Creators Develop an Edge in a Saturated Market
    5 Min Read
    data analytics and commerce media
    Leveraging Commerce Media & Data Analytics in Ecommerce
    8 Min Read
    big data in healthcare
    Leveraging Big Data and Analytics to Enhance Patient-Centered Care
    5 Min Read
    instagram visibility
    Data Analytics Plays a Key Role in Improving Instagram Visibility
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Using Analytics to Identify New Valuable Customers
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Using Analytics to Identify New Valuable Customers
AnalyticsBest PracticesCRMMarketing

Using Analytics to Identify New Valuable Customers

Editor SDC
Last updated: February 15, 2012 8:49 am
Editor SDC
3 Min Read
SHARE
Value segments can provide useful information for the development of effective Acquisition models. Acquisition campaigns aim at the increase of the market share through expansion of the customer base with customers new to the market or drawn from competitors. In mature markets there is a fierce competition for acquiring new customers. Each organization incorporates aggressive strategies, massive advertisements and discounts to attract prospects.

Value segments can provide useful information for the development of effective Acquisition models. Acquisition campaigns aim at the increase of the market share through expansion of the customer base with customers new to the market or drawn from competitors. In mature markets there is a fierce competition for acquiring new customers. Each organization incorporates aggressive strategies, massive advertisements and discounts to attract prospects.

Analytics can be used to guide the customer acquisition efforts. However a typical difficulty with acquisition models is the availability of input data. The amount of information available for people who do not yet have a relationship with the organization is generally limited compared to information about existing customers. Without data you can not build predictive models. Thus data on prospects must be collected. Most often buying data on prospects at an individual or postal code level can resolve this issue.

A usual approach in such cases is to run a test campaign on a random sample of prospects, record their responses and analyze them with predictive models (classification models like decision trees for example) in order to identify the profiles associated with increased probability of offer acceptance.

The derived models can then be used to score all prospects in terms of acquisition probability. The tricky part in this method is that it requires the roll out of a test campaign to record prospect responses in order to be able to train the respective models. However, an organization should not try to get any customer but it should focus on new customers with value prospects . Therefore, an alternative approach, which of course can be combined with the one described above, is to search for potentially valuable customers.
According to this approach the model is trained (again a classification model) on existing customers, it identifies the profile of the high value customers and then extrapolates it into the list of prospects to discern the ones with similar characteristics. The key to this process is to build a model on existing customers using only fields that are also available for prospects. For example, if only demographics are available for prospects, the respective model should be trained only with such data.
Acquisition marketing activities could target new customers with the ‘valuable’ profile and new products related to these profiles could be developed, aiming to acquire new customers with profit possibilities.

Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

trusted data management
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Artificial Intelligence Big Data Data Management
data analytics in ecommerce
Analytics Technology Drives Conversions for Your eCommerce Site
Analytics Exclusive
data grids in big data apps
Best Practices for Integrating Data Grids into Data-Intensive Apps
Big Data Exclusive
AI helps create discord server bots
AI-Driven Discord Bots Can Track Server Stats
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Everything – But Faster!

4 Min Read
ROI and Data analytics
AnalyticsBest PracticesBig DataBusiness IntelligenceCulture/LeadershipData ManagementMarketingPolicy and Governance

ROI for Big Data and Analytics

4 Min Read

The Importance of Good Visualizations

11 Min Read

3 Simple Checks to Do Before Expanding Your Data Team

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-24 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?